The Single-Molecule Mechanics of the Latent TGF-β1 Complex

نویسندگان

  • Lara Buscemi
  • David Ramonet
  • Franco Klingberg
  • Aurélie Formey
  • Josiane Smith-Clerc
  • Jean-Jacques Meister
  • Boris Hinz
چکیده

BACKGROUND TGF-β1 controls many pathophysiological processes including tissue homeostasis, fibrosis, and cancer progression. Together with its latency-associated peptide (LAP), TGF-β1 binds to the latent TGF-β1-binding protein-1 (LTBP-1), which is part of the extracellular matrix (ECM). Transmission of cell force via integrins is one major mechanism to activate latent TGF-β1 from ECM stores. Latent TGF-β1 mechanical activation is more efficient with higher cell forces and ECM stiffening. However, little is known about the molecular events involved in this mechanical activation mechanism. RESULTS By using single-molecule force spectroscopy and magnetic microbeads, we analyzed how forces exerted on the LAP lead to conformational changes in the latent complex that can ultimately result in TGF-β1 release. We demonstrate the unfolding of two LAP key domains for mechanical TGF-β1 activation: the α1 helix and the latency lasso, which together have been referred to as the "straitjacket" that keeps TGF-β1 associated with LAP. The simultaneous unfolding of both domains, leading to full opening of the straitjacket at a force of ~40 pN, was achieved only when TGF-β1 was bound to the LTBP-1 in the ECM. CONCLUSIONS Our results directly demonstrate opening of the TGF-β1 straitjacket by application of mechanical force in the order of magnitude of what can be transmitted by single integrins. For this mechanism to be in place, binding of latent TGF-β1 to LTBP-1 is mandatory. Interfering with mechanical activation of latent TGF-β1 by reducing integrin affinity, cell contractility, and binding of latent TGF-β1 to the ECM provides new possibilities to therapeutically modulate TGF-β1 actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بیان ژن فاکتور رشد تغییر‌دهنده‌ی بتا 1 (TGF-β1) و ارتباط آن با میزان خارش در ضایعات پوستی جانبازان شیمیایی مواجهه یافته با گاز خردل

Background and Aim: As a blistering agent, mustard gas causes a variety of disorders in different body organs, including the skin, such as altrations in DNA and clinical manifestations like pruritus. TGF-β1 molecule is a cytokine with anti-cell growth and inflammation suppression effects in skin inflammation. The aim of this study was to determine TGF-β1 gene exprtession in victims exposed to m...

متن کامل

TGF-β1 autocrine signalling and enamel matrix components

Transforming growth factor-β1 (TGF-β1) is present in porcine enamel extracts and is critical for proper mineralization of tooth enamel. Here, we show that the mRNA of latent TGF-β1 is expressed throughout amelogenesis. Latent TGF-β1 is activated by matrix metalloproteinase 20 (MMP20), coinciding with amelogenin processing by the same proteinase. Activated TGF-β1 binds to the major amelogenin cl...

متن کامل

Co‐expression of the protease furin in Nicotiana benthamiana leads to efficient processing of latent transforming growth factor‐β1 into a biologically active protein

Transforming growth factor beta (TGF-β) is a signalling molecule that plays a key role in developmental and immunological processes in mammals. Three TGF-β isoforms exist in humans, and each isoform has unique therapeutic potential. Plants offer a platform for the production of recombinant proteins, which is cheap and easy to scale up and has a low risk of contamination with human pathogens. TG...

متن کامل

FOXP3 and TGF-β Gene Polymorphisms in Allergic Rhinitis

Background: Regulatory CD4+T (Treg) cells are effective in maintaining immune tolerance. Objective: To investigate single nucleotide polymorphisms (SNPs) of Transforming Growth Factor β-1 (TGF-β1) and Forkhead Box Protein 3 (FOXP3) genes in Iranian patients with allergic rhinitis (AR). Methods: Variations at codons 10 and 25 of TGF-β1 and FOXP3 at positions -3279 A>C and -924 A>G were evaluated...

متن کامل

TGF-β1 enhanced myocardial differentiation through inhibition of the Wnt/β-catenin pathway with rat BMSCs

Objective(s): To investigate and test the hypotheses that TGF-β1 enhanced myocardial differentiation through Wnt/β-catenin pathway with rat bone marrow mesenchymal stem cells (BMSCs).Materials and Methods: Lentiviral vectors carrying the TGF-β1 gene were transduced into rat BMSCs firstly. Then several kinds of experimental methods were u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2011